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Abstract

Brake squeal is a friction induced instability phenomenon that has to be addressed during the development process. The

mechanism is considered a mode coupling phenomenon also referred to as coalescence. The system eigenvalues have been

computed using a technique based on the finite element method. The coalescence patterns were then determined in relation

to the friction coefficient. The effects of damping on the coalescence patterns have been investigated. If the two modes

involved in the coalescence are equally damped, a ‘‘lowering effect’’ that tends to stabilize the system is observed. If the two

modes are not equally damped, both ‘‘lowering’’ and ‘‘smoothing’’ effects occur. If the ‘‘smoothing effect’’ prevails, added

damping may act in an unintuitive way by destabilizing the system. To further study this point, stability areas have been

plotted and a metric is proposed to find the most stable configuration in terms of damping distribution. In the squeal

frequency range, coalescence patterns often involve more than two modes. In this case, the effect of damping is far more

complicated since several modes are coupled both in terms of friction and damping.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Brake squeal is currently a key issue in brake development. This brake noise, with frequencies ranging from
1 to 10 kHz is quite annoying since levels of 110 dB may be reached. Development requires a great deal of
experimental work based on a trial and error process. Moreover, it is all the more difficult to resolve given that
brake power has increased over the past few years. Nevertheless, recent breakthroughs in numerical analyses
have made it possible to tackle the issue upstream in the development process with promising results.

Brake squeal, which has been studied for years, is considered to be a friction induced instability
phenomenon. Kinkaid et al. [1] have proposed a review that summarizes the background and the main studies
of brake squeal. Chen et al. [2] have published an overview of recent breakthroughs in theoretical,
experimental and numerical fields. As far as squeal modelling is concerned, two kinds of analyses may be
performed: time or frequency domain analyses. These two procedures have specific advantages and drawbacks
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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as mentioned by Mahajan et al. in Ref. [3]. The second procedure, called complex eigenvalue analysis (CEA),
has been the most used by researchers. It deals with computing the system eigenvalues, which prove to be
complex valuated functions in the general case because friction causes the stiffness matrix to be asymmetric.
The real and imaginary parts of the complex eigenvalues are, respectively, responsible for the stability and for
the frequency of the corresponding modes. This method was first used on lumped models [1,4–8]. Then,
improvements in computer systems have made it possible to perform analyses on finite element (FE) models
[9]. Since friction is the root cause of instability, some researchers have investigated the effect of the friction
coefficient on complex eigenvalues [10–14]. They have highlighted the phenomenon referred to as mode
coupling, which shows the transition between the frictionless stable behaviour of the brake and its unstable
behaviour with friction. Some researchers have focused on the deformed shapes of the modes. They have
investigated the role of the frictionless real modes, of the components or of the entire system, on complex
modes with friction. These two roles have been studied by Lee et al. in Ref. [12] using, respectively, the factors
known as Component Modal Participation Factor and System Participation Factor.

Instabilities are understood through CEA as an equivalent negative damping. Therefore, the system
damping is expected to have a significant effect on its stability. A brake system features several kinds of
damping, such as structural damping, friction-induced damping and the damping effect of insulators. The
effects of damping were first investigated on analytical and experimental analyses [15–21]. Nevertheless, taking
damping into account in a whole brake FE model is far more complicated. Most researchers have therefore
neglected damping, invoking the following rule of thumb: the undamped situation must be the worst. Some
researchers have taken an overall damping value into account [9,22,23]. In most cases, a constant loss factor is
applied to the entire frequency range. Other researchers have focused on an accurate modelling of damping
sources: friction-induced damping [24–26] and shims [27–29].

This paper focuses on the effect of damping on the mode-coupling phenomenon involved in brake squeal.
The study is based on the FE model of a commercial brake corner. Damping is taken into account in a modal
way and a numerical method to extract the system damped eigenvalues is presented. Then, parametric studies
are used to investigate the effect of damping on the mode-coupling phenomenon. Two cases are highlighted
and specifically studied: the two mode-coupling patterns and the coupling patterns that involve more than
two modes.
2. Numerical method

A commercial front brake has been modelled using the FE method, as shown in Fig. 1.
It leads to the general equation of motion 1:

M€uþ C_uþ Ku ¼ 0, (1)

whereM, C, K are, respectively, the mass, damping and stiffness matrices. u is the displacement vector and dot
denotes derivative with respect to time. Since contact and friction have been taken into account in the model,
the stiffness matrix has specific properties as given below

K ¼ KStructure þ mKFriction. (2)

KStructure is the structural stiffness matrix, which can be directly computed by FE solvers. This matrix includes
the springs used to model contacts between components. m is the friction coefficient and KFriction is the
asymmetrical friction induced stiffness matrix. The second term in Eq. (2) may be obtained analytically by
expanding the friction force as a function of the displacements of the contact nodes. This point, which will not
be presented here for the sake of brevity, is based on the Coulomb law [30].

The undamped and frictionless case, defined in Eq. (3), is noteworthy because it involves a symmetric
stiffness matrix and therefore does not require a complex solver

M€uþ KStructureu ¼ 0. (3)

In this case, FE software is able to compute the frequencies o and the modal basis U through a normal mode
analysis. U gathers the first n eigenvectors as columns, normalized with respect to the mass matrix. n is related
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Fig. 1. Finite element model.
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to the chosen modal truncation. X is defined in Eq. (4) as the diagonal matrix gathering the frequencies

X ¼ diagðo1 � � �onÞ. (4)

The displacement vector in Eq. (1) can be expressed as a linear combination of the undamped and frictionless
modes. This relationship is written in matrix form in Eq. (5), with Y the displacement coordinates in the
undamped and frictionless modal basis. Y may also be named modal participation vector (mpv)

u ¼ UY. (5)

Once left multiplied by UT, transformed in the frequency domain and expanded using the orthogonality
relations, Eq. (1) can be rewritten as

½Is2 þDsþ ðX2
þ mKf Þ�Y ¼ 0, (6)

where D and Kf are, respectively, the projections of C and KFriction on the undamped and frictionless modal
basis. I is the identity matrix and s is the Laplace parameter.

For a given m and a given D, Eq. (6) can be rewritten as a general eigenvalue problem involving the
eigenvalue s and the eigenvector Y. In the general case, both are complex valuated functions as shown below

s ¼ aþ ib; Y ¼ Yreal þ iYimag. (7)

Eigenvectors account for the mode deformed shapes and eigenvalues account for the mode time behaviours.
The eigenvalue imaginary parts deal with mode frequencies, whereas the real parts deal with mode stability. A
mode is stable if ap0, and is otherwise unstable.

Let C be a matrix in which the eigenvectors Y are stored by columns. Eq. (5) makes it possible to write W,
the modal deformed shapes with friction, as a function of the frictionless modal basis U. C is the modal
participation matrix linking W and U:

W ¼ UC. (8)

From a practical point of view, the procedure can be summarized as follows. First, the normal modes of the
frictionless and undamped model are computed by FEM. From the results, the terms of Eq. (6) can be
inferred. Then, the eigenvalues and the eigenvectors related to this equation are computed and analysed.
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3. Two mode-coupling patterns

3.1. Undamped coupling patterns

In the undamped case, where we assume that D is zero, the only remaining variable in Eq. (6) is m. A
parametric study has thus been performed with respect to this parameter. Fig. 2 gathers curves describing the
eigenvalue variability for 100 values of the friction coefficient. For the sake of clarity, this figure focuses on
two modes chosen for their propensity to instability. Real parts have been normalized so that the largest value
in Fig. 2 is one. Frequencies and friction values have been normalized with respect to a point which will be
defined below.

Fig. 2 displays the evolution of frequencies and real parts as a function of the friction coefficient. At m ¼ 0,
the system features two separate modes in the frequency range, that will be referred to as M1 and M2 by
increasing frequencies. These two modes are stable since their real parts are zero. The corresponding
frictionless deformed shapes, which have been computed through a FE normal mode extraction, are shown in
Fig. 3. M1 consists of an in-phase bending of the knuckle mounts that drives the anchor bracket in a rigid
body rocking mode. The calliper translates along its guiding pins. M2 features a knuckle twisting mode that
makes the knuckle mounts move in anti-phase. Thus, the anchor twists and drives the calliper in rotation by
means of the guiding pins. Meanwhile, the pads slip along the disc surface between the leading and trailing
abutments. The coupling between M1 and M2 belongs to the general class of coupling between translation
and rotation modes that is often encountered in analyses involving friction.

As the friction coefficient increases, Fig. 2 shows that the real parts remain zero and that the frequencies
tend to get closer. The two modes reach the same frequency at a point known as the ‘‘bifurcation point’’
(or ‘‘lock-in point’’). This point, which occurs for a friction value of 0.34, has been used as a reference to
normalize frequency and friction values. After that point, the system behaviour is deeply altered. Indeed, the
frequencies remain equal but the real parts become non-zero and opposite. As mentioned in the previous
section, this means that one of them is stable (ao0) whereas the other one is unstable (a40).

Having studied eigenvalue variability, we now focus on eigenvector variability as a function of the friction
coefficient. The eigenvectors Y are scaled so that the norm of each is 1. The five most influential terms of the
Fig. 2. Undamped coalescence pattern.
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Fig. 3. Undamped deformed shapes: (a) Mode M1Frictionless; (b) Mode M2Frictionless.
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Fig. 4. Undamped modal participation vectors: (a) Mode M1; (b) Mode M2.
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modal participation vectors corresponding to M1 and M2 are shown in Fig. 4. The reference numbers in
the key give the indices of the frictionless modes that participate in M1 or M2. 0 refers to the ‘‘current’’ mode
(M1 or M2, respectively), 1 to the ‘‘next’’ one and �1 to the ‘‘previous’’ one, in the order of the frictionless



ARTICLE IN PRESS
G. Fritz et al. / Journal of Sound and Vibration 307 (2007) 591–609596
frequency. Note that for the sake of clarity, only one point out of ten has been marked, but the curves have not
been artificially smoothed. As expected, at m ¼ 0, M1 is a real mode, where all the participation factors are
zero except the one corresponding to M1Frictionless which is 1. As the friction coefficient increases, the influence
on M1 of M1Frictionless decreases quickly whereas that of M2Frictionless increases. Once the bifurcation point is
reached (Normalized Mu ¼ 1), the curves have slope-breaks and the mode becomes complex. For M2, the
influence of M2Frictionless decreases slowly whereas that of M1Frictionless increases as the friction coefficient
increases from zero. At the bifurcation point, M1 and M2 have the same modal participation factors. This
means that these two modes are the same. Beyond that point, the participation factors of the two modes
remain equal in real parts and opposite in imaginary parts. This point is due to the fact that the eigenproblem
defined in Eq. (6) involves a real matrix. Assuming that the couple ðl;X Þ is the complex eigenvalue and
complex eigenvector of a real matrix A. It can be proven that the complex conjugate couple, ðl̄; X̄ Þ, is also an
eigenvalue and eigenvector of A.

The bifurcation point is a singular point, at which the eigenvalues and the eigenvectors corresponding to the
two modes are the same. Therefore, it is impossible to track the modes passing through the bifurcation point.
After that point, the stable mode has thus been arbitrarily linked to M1 and the unstable one to M2. Beyond
the coalescence point, the contribution of M1Frictionless on the real parts decreases whereas its influence on the
absolute value of the imaginary parts increases. Finally, M2Frictionless has a very strong impact on the real parts
and M1Frictionless drives the imaginary parts of M1 and M2.

3.2. Damped coupling patterns

In this section, D is assumed to be:

D ¼ diagð0 � � � 0; d1; d2; 0 � � � 0Þ. (9)

So that only M1 and M2 are damped, respectively, with d1 and d2.
The equally damped case, defined as d1 ¼ d2 ¼ d has been studied first and the results are shown in

Fig. 5(a). The undamped case, which will be referred to as Case A, is compared with two equally damped
cases, Case B and Case C, defined in Table 1. As previously explained by Hoffmann and Gaul [18], and Sinou
and Jézéquel [7], increasing the value of d makes the eigenvalue real parts decrease, whereas the frequencies
remain approximately constant. Indeed, in the complex plane, the eigenvalues are shifted towards the stable
side. The eigenvalue real parts become positive for a higher value of the friction coefficient. Therefore,
increasing d increases the brake stability range.

The coupling patterns involved in the unequally damped cases are far more complicated, as illustrated in
Fig. 5. The undamped case, Case A, is compared with two unequally damped cases, Case D and Case E,
defined in Table 1. As expected, the main effect of added damping is a shift of the eigenvalue real parts
towards the negative values. Nevertheless, the coalescence patterns are deeply altered because of the unequal
spread of damping. First, this damping distribution induces a jd2� d1j=2 gap in real parts between the
Table 1

Critical values of the friction coefficient

Situation Case d1 d2 mc

Undamped A 0 0 1.00

Equally damped B 25 25 1.07

C 50 50 1.27

Non-equally damped D 25 30 1.07

E 50 55 1.32

Additional cases F 0 25 0.33

G 50 25 0.98

H 25 0 0.33

I 25 50 0.98
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Fig. 5. Damped coalescence patterns: (a) equally damped, Case A, Case B, Case C; (b) non-equally damped, Case A, Case D,

Case E.
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two modes at m ¼ 0. Then, the main change occurs in the vicinity of the coalescence point. As explained by
Hoffmann and Gaul [18], a ‘‘smoothing effect’’ of the curves with respect to the friction coefficient is observed,
both for real parts and frequencies. Therefore, the real parts begin splitting at a lower friction coefficient value
than for the undamped situation. As a consequence, increasing the gap in damping between the two modes
tends to decrease the stability range.

Though coalescence patterns are more complicated than in the undamped cases, they offer a significant
advantage. Thanks to the frequency and real part shifts which are non-zero for each friction value, the
unstable mode can now be clearly identified and tracked with respect to the friction coefficient value. Here, the
unstable mode turns out to be the least damped mode.

3.3. Unstable modes

In Fig. 5(b), basic mode tracking reveals that the unstable mode is the least damped mode. In order to
confirm this point, the four possible cases corresponding to d1� 25 and d2� 25 have been computed with
respect to case B. These cases are defined in Table 1 and shown in Fig. 6. As expected, in each case, the
unstable mode turns out to be the least damped mode.

From there, it may be interesting to investigate the effect of damping on deformed shapes. Indeed, in
unequally damped cases, it is possible to track the modes, especially the unstable ones, with respect to the
friction coefficient. For the sake of brevity, only cases F and G will be described in terms of modal
participation factors in Figs. 7 and 8, but similar conclusions might be drawn from the cases H and I.

We first notice that the damped modal participation factors resemble the undamped ones, except that they
are smoother in the vicinity of the bifurcation point. Furthermore, M1 and M2 become complex before
the undamped bifurcation point, defined as Normalized Mu ¼ 1:0. The mpv real parts of M1 and M2,
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Fig. 6. Tracking of the unstable mode on the damped coalescence patterns: (a) Case B, Case F, Case G; (b) Case B, Case H,

Case I.
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Fig. 7. Damped modal participation factors of M1: (a) Case F; (b) Case G.
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respectively, look quite the same for the cases F and G. The mpv imaginary parts are opposite between the
cases F and G. In other words, the deformed shape of the unstable mode has a positive imaginary part,
whereas the deformed shape of the stable mode has a negative one.
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Fig. 8. Damped modal participation factors of M2: (a) Case F; (b) Case G.
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3.4. Stability areas

As described in the previous section, the addition of modal damping has complicated effects on coupling
patterns. Nevertheless the main point is to assess its effect on brake stability.

It can be inferred from Fig. 6 that the ratio between the two dampings d1 and d2 must be a key parameter
influencing the stability of the corresponding two modes. Fig. 9 gives stability charts resulting from a bi-
parametric stability analysis involving m and d2=d1. The three stability charts, whose ordinate axes are
logarithmically spaced, refer, respectively, to the following values of d1 : f1; 10; 20g. For each couple of the two
parameters, a white area means that the system is stable whereas a gray area means that one mode has a
positive eigenvalue real part. The three charts feature the same range of d2=d1, but their limit of validity are
not the same. Indeed, for our system, d has physical meaning only up to around 100. For d1 ¼ 1, the most
stable configuration is the equally damped case, corresponding to d2=d1 ¼ 1. A shift in damping from this
point makes the range of stability decrease. For higher values of d1, the most stable case is also the equally
damped case. Nevertheless, the frontier between the stable and unstable cases features a local minimum of the
stability range. This minimum tends to shift towards the lower values of d2=d1 ¼ 1 as d1 increases. Moreover,
Figs. 9(b), (d) and (f) show the merging scenario and the stability behaviour of the two coupling modes. It
clearly appears that the stable mode (corresponding to the blue surface) is the mode that features the highest
frequency of the two coupling modes if d2=d1o1. The green surface defines the unstable mode or the mode
that is associated with the eigenvalue having the maximum real part if the system is stable. Then, for d2=d141,
the stable mode is the mode that features the lowest frequency of the two coupling modes. It may be con-
cluded that a more stable system is obtained for d2=d1 ¼ 1 when stable and unstable frequencies reverse.
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To go further, a full factorial design of experiments has been launched with respect to d1 and d2. The results
are given in Fig. 10 for several values of the friction coefficient. The first chart, corresponding to m ¼ 0:59,
shows that the stable area is a stripe centred on the equally damped case. Moreover, it highlights the
phenomenon of destabilization induced by damping. Indeed, assuming that either d1 or d2 is fixed at a low
value, increasing the other one tends to cross the frontier of stability and makes the system unstable. As the
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friction coefficient increases, the stable stripe shrinks. Beyond the undamped bifurcation point, the system is
unstable, unless the two modes are sufficiently damped, in an equal way. This phenomenon is highlighted in
the m ¼ 1:00 curve since the stability area is located in the right upper corner of the chart. Then, Fig. 11
indicates the evolution of stable and unstable modes. As previously explained, the stable and unstable modes
(and the value of the corresponding frequencies) reverse when the structural damping ratio d2=d1 is equal to 1.
3.5. Application of the robust damping factor (RD-factor)

In this section, the criterion called robust damping factor (RD-factor) defined by Sinou et al. [31] is
investigated in order to obtain the optimal damping ratio d2=d1 for a given set of physical parameters.

The RD-factor is defined as a function of the real parts of eigenvalues (that define the stability of the
mechanical system) and the relative values between the two frequencies of the merging modes. The RD-factor
criterion may be given by [31]

RD�Factor ¼ �MaxðReðlÞÞ log
DF

DRþ 1
þ 1

� �
if ReðlÞp0;

RD�Factor ¼ 0 if ReðlÞ40;
(10)
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where �MaxðReðlÞÞ may be defined as the distance between the greatest real part and the zero real part axis.
DR and DF define the difference between the real parts and the associated imaginary parts of the two coupling
modes. They are given by

DR ¼ jReðlunstableÞ �ReðlstableÞj, (11)

DF ¼ jImðlunstableÞ � ImðlstableÞj, (12)

where ImðlÞ and ReðlÞ define the imaginary and real parts of l. Here, we have assumed that flutter instability
is composed of two modes among which only one is unstable. The most robust damping ratio of d2=d1
corresponds to the highest value of the RD-factor (for various values of d1 or d2 while keeping the other
physical parameters): it is given by the smallest difference between the real parts of the two merging modes
(this difference is equal to zero when the stable and unstable modes reverse) and the greatest difference
between the two frequencies (for which the associated real parts are equal to zero).

Figs. 12(a) and (b) illustrate the evolution of the RD-factor versus the damping ratio d2=d1 and the
normalized friction coefficient for two values of d1. The variability of the RD-factor versus d2 and d1 for two
values of the normalized friction coefficient is shown in Figs. 12(c) and (d). Considering Figs. 12(c) and (d), the
greater the proportional structural damping (for d1 ¼ d2), the greater the RD-factor. So the RD-factor shows
that by increasing equal structural damping d1 ¼ d2, the system is more stable due to the fact that the real
parts of the eigenvalues are translated towards the negative real parts. Considering Figs. 12(a) and (b), the
RD-factor is greater when the damping ratio d2=d1 is equal to 1, even if the damping value d1 varies. In both
cases, the same area is obtained for the most robust damping ratio. We see that this area corresponds to the
zone of the merging scenario of the two coupling modes (as indicated in Figs. 9(b), (d), (e) and 11). So, the RD
helps avoid design errors and reduce flutter instability. As previously explained, introducing proportional
structural damping between the stable and unstable modes (d1 ¼ d2) may be used in order to enhance the
stability of mechanical systems.

4. Patterns involving more than two modes

4.1. Undamped coupling patterns

The previously described coupling patterns involved only two modes. This kind of behaviour is more likely
to be found in very low-frequency squeals. For higher frequency squeals, the phenomena are more
complicated, since the modal density is higher. In order to illustrate this point, Fig. 13 shows the evolution, in
the complex plane, of six consecutive modes as a function of the friction coefficient. These modes are referred
to as MA to MF with increasing frequencies.

Their frictionless deformed shapes, shown in Fig. 14, are analysed below.
MA:
 this mode features a twisting of the knuckle. The lower and upper outer parts of the anchor bracket twist
in-phase along the guiding pin axis. As a consequence, the beam deflects. The disc undergoes vibrations
of low magnitude corresponding to a 3 nodal diameter bending mode. The inner pad slips on the disc
surface, along the orthoradial direction, between its abutments.
MB:
 the knuckle mounts, which vibrate in anti-phase, drive the anchor bracket in a twisting mode which
resembles the one involved in MA. Driven by the calliper, the piston slips on the inner back plate in the
radial direction. The inner lining deflects in compression and the disc deflects in a so-called umbrella mode.
MC:
 this mode consists mainly of a calliper bending and an umbrella mode of the disc. The inner pad slips on
the disc surface, along the orthoradial direction, between its abutments. The inner lining deflects in
compression. The anchor bracket behaves in the same way as it does in mode MA
MD:
 the knuckle mounts vibrate in anti-phase. The anchor bracket undergoes a large magnitude ‘‘opening
mode’’, which is in anti-phase between up and down. Here, an ‘‘opening mode’’ means that the two parts
of the anchor bracket, on both sides of the disc, tend to separate from each other. The calliper bends, the
inner pad slips between its abutments and the linings deflect in compression. The disc features a 3 nodal
diameter bending mode, with a nodal line under the middle of the pads.
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Fig. 14. Deformed shapes of modes MA to MF in the frictionless situation.
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ME:
 The anchor bracket undergoes a low magnitude opening mode. The calliper bends with
large magnitude displacements. The inner pad bends and the outer lining deflects in compression.
The disc features a 3 nodal diameter bending mode, with an anti-nodal line under the middle of
the pads.
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MF:
 the knuckle mounts vibrate in-phase. The anchor bracket beam undergoes large magnitude
displacements. The calliper bends and the disc deflects in an umbrella mode. The inner pad slips
between its abutments. The outer pad undergoes a rigid body rotation, keeping contact with the disc.
Some of these frictionless modes appear to be quite similar. Especially, the two pairs of modes MB2MC and
MD2ME feature the same disc vibration pattern, respectively, an umbrella mode and a 3 nodal line bending
mode. Moreover, MD and ME deal with disc doublet modes [1,32]. The two pairs of modes, MB2MC and
MD2ME, may be named ‘‘compatible’’ modes, as used by Huang et al. in Ref. [30]. Looking back in Fig. 13,
this point is confirmed since MB2MC and MD2ME are coupled as the friction coefficient increases. Their
critical friction coefficients are, respectively, mcBC ¼ 2:37 and mcDE ¼ 1:00. Note that the data have been
normalized with respect to the most critical bifurcation point, the one that involves MD and ME.

As far as the deformed shapes are concerned, the evolution of modal factors are shown in Figs. 15 and 16,
respectively, for the MB2MC and MD2ME couplings. The first point to notice in Fig. 15 is that three modes
are mainly involved in the MB2MC coupling: obviously MBFrictionless and MCFrictionless but also MAFrictionless.
As friction increases, the participation of MBFrictionless on the real part of MB decreases and the participation
of MAFrictionless and MCFrictionless grows. As far as MC is concerned, the same kind of behaviour can be
observed, with the roles played by MBFrictionless and MCFrictionless reversed. After the bifurcation point that
occurs at mcBC ¼ 2:37, the contribution of MAFrictionless has a very strong impact on the real parts. Meanwhile,
the contributions of MBFrictionless and MCFrictionless decrease on the real parts and increase on the imaginary
parts. Finally, MAFrictionless drives the real parts whereas MBFrictionless and MCFrictionless drive the imaginary
parts of MB and MC.
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For the MD2ME coupling, the phenomena at stake are even more complicated. Fig. 16 illustrates that six
frictionless modes have significant contributions on the deformed shapes of MD and ME. These frictionless
modes are MA;MC;MD;ME;MF and MG, which is beyond the scope of Fig. 13. After the bifurcation point,
which occurs at mcDE ¼ 1:00, MDFrictionless drives the real parts and MFFrictionless and MGFrictionless drive the
imaginary parts of MD and ME.

4.2. Damped coupling patterns

This section focuses on the effect of modal damping on the coupling patterns shown in Fig. 13. In previous
sections, the damping effect was restricted to the coupling which involves the damped mode. Here, the
phenomena are more complicated. The first point to notice is that the terms provided by Kf in Eq. (6) couple
the modes with each other. It can be inferred from Fig. 17, which gathers these terms for modes MA–MG, that
the equations governing these seven modes are strongly coupled.

As a consequence, introducing modal damping on a particular mode will not only modify its coupling
pattern, but also alter the behaviour of the other modes. This point is illustrated in Fig. 18, in which only MD

has been damped. As expected, the MD2ME coupling pattern is altered in the same way as described in the
previous sections. Nevertheless, the MB2MC coupling pattern is also disturbed. MB is stable whereas MC is
unstable. Moreover, MA and MF, which are not involved in any coalescence, are stabilized.

The effect of damping is far from being fully understood. Indeed, Fig. 19 illustrates a specific case of
damping effect in which only the highest frequency mode has been progressively damped, from d ¼ 0 to 1500.
These curves highlight 3 eigenvalue veerings, respectively for the following transitions: ðd ¼ 600! d ¼ 700Þ,
ðd ¼ 800! d ¼ 1000Þ, ðd ¼ 1300! d ¼ 1400Þ.

5. Conclusion

In this study, brake squeal has been analysed as a mode-coupling phenomenon induced by friction. The
effects of damping on the way the two modes tends to couple has been investigated. First, the modal behaviour
of the system has been assessed with the FE method. The system eigenvalues have been computed with respect
to the friction coefficient. Coalescence patterns which depict the evolution of eigenvalues with respect to the
friction coefficient have been determined. Then, damping has been taken into account by means of modal
damping. If the two modes involved in the coalescence are equally damped, damping stabilizes the system by
shifting the eigenvalues towards the negative real parts. This effect is referred to as the ‘‘lowering effect’’. If the
two modes are not equally damped, damping proves to have two different effects: a ‘‘lowering effect’’ and a
‘‘smoothing effect’’. The lowering effect tends to stabilize the system, as in the equally damped case.
Nevertheless, if the smoothing effect prevails, added damping may destabilize the system. This point has been
investigated by building stability areas with respect to friction and modal dampings. To go further, a metric,
referred to as the RD-factor, has been used to predict the most stable combination of damping. From a
practical point of view, only very low-frequency squeals involve two frictionless modes in their coalescence
patterns. Higher frequency squeals involve more than two modes and feature far more complicated
coalescence patterns. In this case, the effects of damping are all the more complicated to understand. Since the
equations governing the system are coupled by friction and by damping, adding damping to a specific mode
may alter the behaviour of another one.
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